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Abstract: Confined diffusion is an important model for describing the motion of biological
macromolecules moving in the crowded, three-dimensional environment of the cell. In this
work we build upon the technique known as sequential Monte Carlo - expectation maximization
(SMC-EM) to simultaneously localize the particle and estimate the motion model parameters
from single particle tracking data. We extend SMC-EM to handle the double-helix point
spread function (DH-PSF) for encoding the three-dimensional position of the particle in the
two-dimensional image plane of the camera. SMC-EM can handle a wide range of camera models
and here we assume the data was acquired using a scientific CMOS (sCMOS) camera. The
sensitivity and speed of these cameras make them well suited for SPT, though the pixel-dependent
nature of the camera noise presents a challenge for analysis. We focus on the low signal setting
and compare our method through simulation to more standard approaches that use the paradigm
of localize-then-estimate. To localize the particle under the standard paradigm, we use both a
Gaussian fit and a maximum likelihood estimator (MLE) that accounts for both the DH-PSF and
the pixel-dependent noise of the camera. Model estimation is then carried out either by fitting
the model to the mean squared displacement (MSD) curve, or through an optimal estimation
approach. Our results indicate that in the low signal regime, the SMC-EM approach outperforms
the other methods while at higher signal-to-background levels, SMC-EM and the MLE-based
methods perform equally well and both are significantly better than fitting to the MSD. In addition
our results indicate that at smaller confinement lengths where the nonlinearities dominate the
motion model, the SMC-EM approach is superior to the alternative approaches.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Introduced in the late 1980’s [1,2], Single Particle Tracking (SPT) has become an important tool
for studying biomolecular motion, particularly inside living cells, with the goal of determining
the trajectory of the particle and the parameters that define its motion [3,4]. In recent years
there has been growing interest in tracking particles moving in three dimensions using, for
example, engineered Point Spread Functions (PSFs) such as the Double Helix PSF (DH-PSF) [5],
tetrapod [6], and others [7]. These encode the 3D position of the particle by engineering the
shape of the PSF of the instrument. For the DH-PSF, for example, the PSF takes the shape of
two (approximately) Gaussian lobes where the lateral position of the particle is at the midpoint
between the centers of the lobes and the axial position is given by the rotation of the lobes around
this point. In this work we build upon our prior efforts for doing simultaneous localization and
parameter estimation from segmented images in SPT data [8,9], focusing on the case of three
dimensional confined diffusion and expanding upon our prior formulation to include the DH-PSF.

SPT analysis of a sequence of images typically begins with image segmentation where the
raw images are processed to extract image sequences containing information about a single
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particle [10]. Under the standard paradigm, these sequences are then further analyzed using a
two-step approach. In the first step, the initial localization provided by segmentation is refined
using methods such as Gaussian Fitting (GF) [11,12] or Maximum Likelihood Estimation (MLE)
[13,14]. The resulting trajectory is then analyzed to estimate model parameters, often using
a Mean Square Displacement (MSD) analysis [15,16] or, at least for some models, with an
MLE [17,18]. These methods are most effective when there is large signal and low background
intensity in the images with a Signal-to-Noise Ratio (SNR) of at least five [10,19]. They struggle
or even fail outright when the signal intensity gets low [20,21]. However, SPT experiments are
often photon-impoverished and subject to significant background levels. As a result, developing
methods that work well under these conditions is a key challenge. To maximize the signal
level, experiments often use sensitive detectors such as Electron Multiplied Charge Coupled
Device (EM-CCD) or scientific Complementary Metal-Oxide Semiconductor (sCMOS) cameras.
sCMOS cameras in particular have become quite popular due to their (relatively) low cost, high
resolution, frame rate, and quantum efficiency, and their large field of view [14,22]. These cameras,
however, bring pixel-dependent noise characteristics that, together with the Poisson-process
nature of photon generation, must be accounted for, particularly at low signal levels.

Even with experiments that yield data with high signal levels, confined diffusion is a challenging
motion model to estimate as it is fundamentally nonlinear. It is, however, an important mode
of motion for molecules moving in the crowded, three dimensional environment of the living
cell and has been used, for example, to describe the dynamics of particles inside vesicular
compartments [23], particle motion in membranes [24], the motion of T-cells [25], and other
biomolecular dynamics (e.g. [26–28]). The standard tool for estimating confinement lengths and
diffusion coefficients is fitting the MSD to a confined diffusion model [15,26]. While this is a
popular technique, it has been shown to be sensitive to user-selected parameters and to noise in
the data [17,29]. These limitations led to the development of MLE schemes for linear models
such as diffusion, directed, and Ornstein-Uhlenbeck (OU) motion, but the nonlinear nature of
confined diffusion makes direct MLE challenging. The parameters extracted from MLE based on
an OU model have been used to infer the confinement lengths [18] but this approach does not
directly model the confinement.

We previously introduced a methodology for simultaneous localization and parameter estimation
that relies on a combination of Monte Carlo filtering to handle nonlinear observation and
motion models and expectation maximization for optimal (ML) estimation of model parameters
[8,9,30,31]. This approach, known as Sequential Monte Carlo-Expectation Maximization (SMC-
EM) takes the sequence of segmented camera images as inputs and jointly estimates the trajectory
and the motion model parameters. It has been applied to wide-field images and to time series
data from confocal-based SPT [32], as well as to estimate parameters with time-varying motion
models [33]. In this work, we build upon that foundation and extend the algorithm to include the
DH-PSF imaging modality. Our approach also accounts for the pixel-dependent readout noise
that is characteristic of sCMOS cameras and which can have a deleterious effect on localization
and estimation algorithms if ignored. While powerful and flexible, this approach does in general
suffer from high computational complexity arising from the Monte Carlo filters and the iterative
technique of EM. This is even more of an issue when handling confined diffusion as the one
step transition function defining that model involves an infinite sum. In this work, we apply an
efficient Monte Carlo filter known as the Gaussian Particle Filter (GPF) [34], combine it with
a Backward Simulation Particle Smoother (BSPS), and utilize an accurate approximation to
the confined diffusion transition density. These modifications, introduced in [30], significantly
reduce the computational time without reducing the localization and estimation performance.

To validate the algorithm against a known ground truth, we carry out simulation studies,
comparing the performance of SMC-EM against alternative approaches based on the standard
paradigm of localize-then-estimate. We generate trajectories by simulating a particle diffusing
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in a box-like environment with images acquired using an sCMOS camera based on a DH-PSF.
For the localization step, we consider two methods. The first is a GF where the intensity data in
each segmented image is fit to a pair of Gaussians, one for each lobe in the DH-PSF. The second
localization algorithm is a modification of an MLE developed in [14] for localizing a particle
based on sCMOS data; here we extend that algorithm to the DH-PSF. From these localizations, we
determine the model parameters using either a fit to the MSD or an optimization approach based
on MLE methods. While the MLE for the confinement length in each axis is straightforward, the
nonlinearities of the confined motion model do not admit a closed-form solution for the diffusion
coefficient. Here we make a simple approximation and assume the particle is freely diffusing and
then apply the MLE developed in [17] to determine the diffusion coefficient.

The primary contributions of this work are (a) extending the SMC-EM technique to include the
DH-PSF for three dimensional motion, (b) demonstrating the ability to do accurate localization
and parameter estimation of confined motion at low signal and low SBR levels, and (c) providing
a quantitative comparison to the standard method of GF-MSD and to other approaches based on
optimal estimation across a range of (very low) SBR levels and confinement lengths.

2. Motion and observation models

2.1. Confined motion

In this work, we consider a particle of interest diffusing in a rectangular “corral-like” environment.
That is, the motion in each axis is limited to the interval [−L/2, L/2]. For simplicity we take L to
have the same value for each axis. The one-step transition density in a single axis is given by [26]
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where the unknown parameters Dx and Lx denote the diffusion coefficient and confinement
length, respectively, and ∆t denotes the time interval between two consecutive image frames. The
particle motion in each dimension is independent and the joint transition density is thus given by
the product of three copies of Eq. (1), one for each of x, y, and z. The density in Eq. (1) involves
an infinite series and one typically takes the value of Np “large enough” to ensure an accurate
representation of the transition density. In prior work we developed a quantitative approach for
selecting Np for a desired approximation error and showed that while the choice depends on both
Lx and Dx, a value of Np ∼ 20 is typically sufficient; see [30] for details. Realizations of the
process defined by Eq. (1), needed for the SMC-EM algorithm as well as to generate simulated
data can be obtained using a simple acceptance-rejection algorithm [35].

2.2. DH-PSF

The DH-PSF, illustrated in Fig. 1, uses a phase plate in the output path of the microscope to
generate a PSF such that the particle is at the center between two lobes that rotate around each
other as the particle moves along the axial direction [7]. While the true shape of the DH-PSF is
non-trivial, it can be well-approximated by a pair of Gaussian lobes [36],
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where G denotes the peak signal intensity; (xi, yi) are the centers of the lobes, given by⎡⎢⎢⎢⎢⎣
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where r is a constant and (xp, yp) is the location of the particle. The angle of the lobes, θ,
is a monotonic function of the axial position with a specific relationship that depends on the
instrument. This relationship is typically obtained by generating a calibration curve by scanning
a single feature along the axial direction and measuring the resulting PSF [7]. In this work, for
simplicity we take a simple linear model

θ = −kz, (4)

where k is a constant.

Fig. 1. The DH-PSF generates two lobes that rotate in the x − y plane as the particle moves
in the z direction. (left) A sequence of simulated images of a particle at different z locations.
(right) an equi-intensity profile of the DH-PSF in (x, y, z), demonstrating the choice of the
“double-helix” name.

2.3. sCMOS camera model

Data in SPT experiments are typically given by a series of camera frames that are pre-processed
into segmented images of P pixels arranged into a

√
P ×

√
P square array. The pixel size is ∆x

by ∆y with the actual dimensions determined both by the physical size of the elements on the
camera and the magnification of the optical system. Photon generation is described by a shot
noise process and at time step t, the expected photon intensity measured for the pth pixel is

λp,t =

∫ xmax
p,t

xmin
p,t

∫ ymax
p,t

ymin
p,t

(︃
1
∆x∆y

)︃
PSF(xt − ξ, yt − ξ

′)dξdξ ′ (5)

where (xt, yt) denotes the position of the fluorescent particle, the integration bounds are over the
given pixel, and PSF(·, ·) is the point spread function of the instrument.

In addition to the signal, there is always a background intensity rate arising from out-of-focus
fluorescence and autofluorescence in the sample. While the background depends on the local
environment, it is typically modeled as a uniform rate Nbgd across the small range of the P pixels.
Combining these signals, the measured photon counts in the pth pixel at time t is given by

Ip,t

QE
∼ Poiss(λp,t + Nbgd) + ϵp,t, (6)

where QE denotes the quantum efficiency of the camera pixels, Poiss(·) represents a Poisson
distribution, and ϵp,t denotes the readout noise. For standard CCD and EM-CCD cameras, the
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statistics of ϵ are independent of the particular pixel and the readout noise can often be neglected.
For sCMOS cameras, the readout noise is pixel-dependent and incorporating this dependency into
the model is important both to generate realistic simulations and to produce accurate estimation
from the data. Following [14] we model the readout noise as

ϵp,t ∼ N(0,σ2
p,t), (7a)

σ2
p,t =

Varp,t

g2
p,t

, (7b)

where σp,t is the standard deviation of the readout noise, and Varp,t and gp,t are called the variance
and gain of pixel p at time t, respectively.

Combining Eq. (6) with Eq. (7) yields the probability density function (PDF) of the measured
photon counts in pixel p at time t,
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A typical frame generated from this model is shown in Fig. 2. The image was generated using
Eq. (8) with the rate λ given by the DH-PSF with G = 30, a background rate of Nbgd = 10, and
variance and gain maps for the pixels as shown in the figure.

Fig. 2. (a) A typical frame of of the DH-PSF based on the sCMOS camera model with
Nbgd = 10, G = 30. (b) The local variance and (c) gain maps for the sCMOS camera.

3. Localization and estimation using SMC-EM

SMC-EM, shown in Fig. 3, is a framework for simultaneous localization and parameter estimation
that uses the well-known EM algorithm to find a (local) MLE of an unknown parameter. In this
section we give a brief overview of the approach. Consider, then, the problem of identifying an
unknown vector parameter θ ∈ Rnθ for the nonlinear state space model

xt+1 = ft(xt, wt, θ), yt = ht(xt, vt, θ), (9)

where x ∈ Rnx is the state, y ∈ Rny is the observation, wt is the process noise with a given
distribution (which may depend on θ), and vt is the observation noise with a given distribution
(that may also depend on the unknown parameter). (Note that in this section only, we are using
the notation xt and yt to refer to the state and observations of the general model in Eq. (9), not the
position of a tracked particle in the plane.) Our goal is to find an MLE of the parameter θ from
the data YN ≜ {y1, . . . , yN}, given by

θ̂ = arg max
θ

log pθ (YN), (10)

where pθ (·) is the joint PDF over the observations. This optimization can only be solved in closed
form in certain simple cases as pθ (YN) is typically intractable. The EM algorithm approaches
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this problem by defining a hidden (or latent) variable; in the context of SPT this hidden variable
is exactly the trajectory of the particle.

Fig. 3. EM based framework for joint estimation of trajectory and model parameters.

EM moves towards the maximum of the log likelihood through iterative optimization of a
function Q given by

Q(θ, θ̂(e)) = E{log pθ (XN , YN)|YN , θ̂(e)}, (11)

where θ̂(e) is current estimate of the parameter and E is the expecation operator. The calculation
of Q
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[37]. Thus, the E-step is followed by a Maximization (M)-step to produce the next estimate,
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Following [38], we decompose (11) into
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To determine the distributions needed in (14), we use a slightly modified version of the Gaussian
Particle Filter (GPF) that we refer to as the simplified GPF (sGPF), combined with the Backward
Simulation Particle Smoother (BSPS) (see Appendix A for details). Under SMC-EM, the Q
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function is then approximated by
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∆
=

∑︁N−1
t=1

1
K

∑︁K
k=1 log pθ (x̃k

t+1 |N |x̃
k
t |N),

I3 ≈ Î3
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where K denotes the number of simulated trajectories used in the BSPS and x̃k
t |N denotes the kth

simulated trajectory at time t. This (approximation) to the Q function is then maximized to find
the next parameter estimate before proceeding back to the E step. Details on the M-step in the
context of SPT are given in Appendix B. This process is repeated until a termination criterion is
met. Based on experience, in this work we terminate after a finite number of iterations (taken to
be 15).

With a dataset consisting of N images, using M Monte Carlo samples in the sGPF and K = M
simulations in the BSPS, the time complexity of this version of SMC-EM is O(NM2); while this
is equivalent to previous work in [8] based on a Sequential Importance Resampling (SIR) filter
and particle smoother, the use of BSPS provides the ability to parallelize computations that is not
afforded by a standard particle smoother and in particular reduces the time complexity of carrying
out the E step of the EM algorithm. The significant reduction in computational complexity is
especially important when considering motion in three dimensions as it allows for a much larger
number of Monte Carlo samples for the same run-time. A detailed run-time comparison between
the previous and current versions of SMC-EM can be found in the Supplemental materials.

4. Demonstration and results

In this section we use simulations to demonstrate SMC-EM and compare its performance against
algorithms based on the standard localize-then-estimate paradigm. We assume segmentation of
the raw images to a sequence of images containing the DH-PSF of the single particle has been
performed. This is, of course, a non-trivial task, especially at low signal levels. Our interest here,
however, is on the relative performance of the estimators and by beginning with the segmented
image sequences we can avoid confounding effects of segmentation.

The performance of SMC-EM depends on the number of Monte Carlo samples; we denote this
with a superscript so that, for example, SMC100-EM uses 100 samples. For the comparison, we
use two approaches for stand-alone localization. The first is based on a GF to each lobe of the
DH-PSF in the image to determine their centers; the particle location is then determined from
Eqs. (3) and (4). The second is MLEsCMOS, developed in [14] for estimating two-dimensional
particle locations from sCMOS camera data, and modified here to include the DH-PSF for 3D
localization. Details of these localization methods can be found in Appendix C. Once the particle
trajectory has been determined, we estimate model parameters using either the MSD or a fast,
MLE-like scheme. For the MSD, we perform a nonlinear fit to the MSD based on the confined
diffusion model in [26]. For the MLE-like scheme, we use the true MLE for the confinement
length; as shown in [8] this estimator is simply given by the range in the estimated trajectory
in each axis. However, the nonlinear nature of the motion model precludes a simple solution
of the MLE of the diffusion coefficient. Rather than utilizing a numerical solver, we apply a
computationally efficient approximation to MLE for the diffusion coefficient assuming a free
diffusion model as developed in [17,29]. We denote these combinations of algorithms using
localization-estimation so that, for example, GF-MLE refers to localization using a Gaussian
fit and parameter estimation using the MLE-like scheme, while MLEsCMOS-MSD refers to
localization using the MLEsCMOS algorithm and parameter estimation using a fit to the MSD.

Simulations were made of a particle diffusing in 3D, confined to a cube centered at the origin
with dimensions of 500 nm. Each simulation consisted of N = 100 frames at an imaging rate
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of 10 frames/s (for a period of ∆t = 100 ms). In practice, cameras accumulate photons over an
integration period and the resulting motion blur arising from particle motion during integration
is an important factor in performance. To replicate this effect, trajectories of length N × Nsub
were generated where Nsub represents a sub-sampling factor. An image is generated at each of
the subsample steps in the shutter period δt. These are then averaged together to produce the
final image for that imaging period to incorporate the effect of motion blur. The ground truth
position for that image is taken to be the average of the particle position over the shutter period.
The parameter settings for all simulations are summarized in Table 1. To generate statistics on
algorithm performance, 50 datasets were simulated for each experimental setting.

Table 1. Simulation Parameter Settings

Symbol Parameter Value

Dx,y,z diffusion coefficient in {x, y, z} 0.01 µm2/s

Lx,y,z confinement length in {x, y, z} 500 nm

Nbgd background intensity rate 10 counts

G peak intensity 10 − 50 counts

N number of image frames/dataset 100

Nsub subsamples per image 100

NA numerical aperture 1.2

λ emission wavelength 540 nm

r distance between DH-PSF lobes 300 nm

k gain of z to θ in DH-PSF −0.1π/180 rad

σxy width of each lobe of DH-PSF 234 nm

P number of pixels 225 pixels

∆x,∆y effective pixel width 100 nm

δt shutter period 10 ms

∆t imaging period 100 ms

QE camera quantum efficiency 1.0

ε peak expected value of readout noise 10 counts

To investigate the behavior of the algorithms at low signal levels, we varied the peak intensity
G across the range of 10-50 counts, holding the background rate fixed. The SNR of the images
can be defined as [39,40]

SNR =
G × QE√︂

(G + Nbgd) × QE × F2
n + ε

2
(16)

where Fn is the excess noise factor (Fn = 1 for sCMOS cameras) and the other terms are defined
in Table 1). Because we directly set the background and peak intensity level, we report results as
a function of Signal-to-Background Ratio (SBR), defined by

SBR =
G

Nbgd
. (17)

From Eqs. (16) and (17), the corresponding SNR and SBR levels considered in the simulations
are shown in Table 2.

Typical images generated by the DH-PSF of a single particle under these SBR conditions are
shown in Fig. 4.
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Table 2. Relationship between SNR and SBR

SBR 1 2 3 4 5

SNR 0.913 1.75 2.53 3.27 3.95

Fig. 4. Typical images at (a) SBR=1, (b) SBR=2, (c) SBR=3, (d) SBR=4, and (e) SBR=5.

4.1. Performance across different signal-to-background ratio (SBR)

We measure localization performance using the Root Mean Square Error (RMSE) over the entire
trajectory as compared to the ground truth. Due to the motion blur effect, the notion of “ground
truth” must be defined; here we use the average of the positions of the true trajectory over the
integration period. The results over these simulations are shown in Fig. 5 as a function of SBR
with GF shown in black/gray, MLEsCMOS in red, SMC100-EM in green, and SMC1000-EM in
purple. The mean for each algorithm is shown as a dashed line, the median as a dotted line and
the shadowed region shows the 10%-90% quantiles of the estimates. The results indicate several
interesting features. First, as expected, increasing the number of Monte Carlo (MC) samples used
in SMC-EM improves localization performance. Second, the algorithms differ primarily at the
lowest SBR levels, performing similarly after an SBR of 4. At lower signal levels, the GF shows
the lowest accuracy and, in the limiting case of SBR=1 is essentially equivalent to taking the
center of the segmented image as the particle location. Both MLEsCMOS and SMC-EM, however,
yield good localization even at the lowest SBR levels, with SMC-EM showing the best results.

Fig. 5. Localization performance evaluated by RMSE among different methods as a function
of SBR. The shadowed area denotes the 10% quantile - 90% quantile of all estimates for
each estimator.

An estimation result on a typical trajectory (with SBR=1) is shown in Fig. 6. All of the
algorithms follow the general trend of the true trajectory. GF, however, yields multiple large
outliers, particularly in the z-direction, driving its larger RMSE. The MLEsCMOS is more variable
than the SMC-EM methods which use data from the entire sequence of images and the motion
model when inferring the particle location. Because MLEsCMOS consistently outperforms the GF
approach, we do not consider the GF method further.

The results on parameter estimation using the different schemes are shown in Fig. 7 for the
diffusion coefficient and in Fig. 8 for the confinement length. The results from MLEsCMOS-MSD
are shown in light blue, those from MLEsCMOS-MLE in red, from SMC100-EM in green, and from
SMC1000 in purple. As before the mean for each algorithm is shown as a dashed line, the median
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Fig. 6. Trajectory estimation comparison by different SPT methods at SBR=1.

as a dotted line, and the shadowed region shows the 10%-90% quantiles of the parameter estimate.
These results clearly show that a fit to the MSD yields the worst performance in estimating
the model parameters with both a larger bias and a much larger range of estimates. In general,
the SMC-EM methods and MLEsCMOS-MLE have very similar performance for estimating the
diffusion coefficient, though the SMC-EM methods have a smaller spread and bias. The exception
is in the z axis where the SMC-EM methods exhibit a larger positive bias than MLEsCMOS-MLE
at an SBR of one but otherwise shows the same trend. At SBRs of two and above, this bias
remains consistent and, while small, is non-zero. There is some evidence in our prior work that
the primary driver of this bias is the relatively short length of the trajectories; as the datalength is
increased, this bias decreases [30].

Fig. 7. Diffusion coefficient estimation performance as a function of SBR. The true diffusion
coefficients were Dx = Dy = Dz = 0.01 µm2/s. The shadowed area shows the 10% quantile
- 90% quantile of all estimates.

Fig. 8. Confinement length estimation performance as a function of SBR. The true
confinement lengths were Lx = Ly = Lz = 0.5 µm. The shadowed area shows the 10%
quantile - 90% quantile of all estimates.

The confinement length results show that at SBRs of 4 or above, the SMC-EM and MLEsCMOS-
MLE approaches are quite similar. As the SBR decreases, however, the MLEsCMOS-MLE
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overestimates the length while the EM approaches remain accurate, though with an increased
spread in the estimates at lower SBR.

4.2. Performance across different confinement lengths

It is reasonable to expect that estimation performance will depend on the confinement length. If L
is very large, the particle will not interact with the boundaries very often and you may need very
long runs to get an accurate estimate of the confinement. However, because the motion essentially
becomes free diffusion, estimating the diffusion parameter is likely to be easier. Conversely,
with small values of L, the nonlinearities in the motion model due to the confinement will be
dominant. Because the particle is very likely to interact with the boundaries, even in short
trajectories, estimation of L may be easier while the estimation of D may suffer since the motion
no longer looks like diffusion. This is particularly likely in the MLEsCMOS-MLE algorithm since
the diffusion estimation assumes a free diffusion model.

To explore this effect, we performed simulations for confinement lengths ranging from 0.1
µm-0.5 µm. Because MLEsCMOS outperforms GF and MLE outperforms MSD, we compared
SMC-EM only to MLEsCMOS-MLE. Based on the results in Sec. 4.1, we expect the algorithms
to differ at the lowest SBR but to perform similarly at higher SBR. We therefore show results
here for SBR=1 and SBR = 5. Results for the range of SBRs between these extremes can be
found in the Supplemental Materials. We also found that confinement length had little effect on
localization and focus here on parameter estimation. Results for localization performance as a
function of confinement length can be found in the Supplemental Materials.

The estimation results for SBR=1 are shown in Fig. 9. In this figure, results from MLEsCMOS-
MLE are shown in red, from SMC100-EM in green, and from SMC1000-EM in purple. The mean
for each algorithm is shown as a dashed line, the median as a dotted line, and the shadowed
region shows the 10%-90% quantiles. The true parameter values are shown as a solid black line.
The results indicate that SMC-EM accurately captures the confinement length across the entire
range of L considered. MLEsCMOS-MLE has the correct trend but shows a bias that decreases as
the confinement length increases. Because the MLE for the confinement length is given by the
range of the estimated trajectory, this likely reflects a larger propensity for occasional outliers
in localization. Because the SMC methods utilize the motion model in localization as well as
in parameter estimation, such outliers are much less likely. Similarly, the SMC-EM methods
are more reliable for diffusion coefficient estimation at smaller confinement lengths. At the
smallest confinement lengths, the particle spends most of its time interacting with the boundary
of the domain and has limited mobility. As a result the diffusion coefficient is significantly
underreported. The estimate improves with increasing L, with the SMC-EM methods consistently
outperforming MLEsCMOS-MLE.

Estimation results for SBR=5 are shown in Fig. 10. Because localization is more accurate
at the higher SBR, the estimation of confinement length using MLEsCMOS-MLE is more
accurate, matching the performance of SMC-EM. At the smallest confinement lengths, however,
MLEsCMOS-MLE still underestimates the diffusion parameter, performing substantially worse
than the SMC-EM approach.

An alternative metric of performance in parameter estimation is the success rate defined as the
percentage of trials with parameter estimates within 25% of the true value [29]. While this is
a coarse metric, it provides a simple, concise means of comparing performance across a wide
range of conditions. Heat maps showing the success rate of the algorithms across all values of
SBR and confinement length we considered are shown in Fig. 11 for the confinement length and
in Fig. 12 for the diffusion coefficient. In each figure, the columns show results in the {x, y, z}
directions, the first row is for MLEsCMOS-MLE, the second for SMC100-EM, and the third row
for SMC1000-EM. The general trend for the confinement length is that both MLEsCMOS-MLE
and SMC-EM accurately estimate this parameter at higher SBR and larger L. As either SBR or
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confinement length is reduced, the SMC-EM methods outperform MLEsCMOS-MLE. Additionally,
as expected the larger number of MC samples in SMC1000-EM improves performance, at the cost
of additional computation time (see the Supplemental Materials for runtime details). This general
trend is repeated in the diffusion coefficient estimation, with two notable differences. First,
the heat maps indicate that at the smallest confinement length and lowest SBR, the SMC-EM
methods show a large increase in success rate for the axial diffusion coefficient. Referring back to
Fig. 9 shows that this is driven by a very large increase in variability of the SMC-EM estimates
under these conditions rather than a true improvement in performance. Similarly, at the smallest

Fig. 9. Parameter estimation performance as a function of confinement length at SBR=1.
The true diffusion coefficients were Dx = Dy = Dz = 0.01 µm2/s. The shadowed area shows
the 10% quantile - 90% quantile of all estimates.

Fig. 10. Parameter estimation performance as a function of confinement length at SBR=5.
The true diffusion coefficients were Dx = Dy = Dz = 0.01 µm2/s. The shadowed area shows
the 10% quantile - 90% quantile of all estimates.
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confinement lengths, SMC100-EM has a higher success rate than SMC1000-EM. This again is

Fig. 11. Heat map of success percentage in confinement length estimates. (top row)
MLEsCMOS-MLE. (middle row) SMC100-EM. (bottom row) SMC1000-EM.

Fig. 12. Heat map of success percentage in diffusion coefficient estimates. (top row)
MLEsCMOS-MLE. (middle row) SMC100-EM. (bottom row) SMC1000-EM.
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due to the increased variability in the diffusion coefficient estimates, driven now by the smaller
number of MC samples in the filters.

5. Discussion and conclusion

The conditions considered in this work, namely confined diffusion under low signal levels, are
challenging for SPT estimation but are important from an applications point of view. Joint
localization and estimation using SMC-EM techniques take advantage of all the data as well as
motion model that connects data points. While SMC-EM has larger computational complexity
than approaches following the localize-then-estimate paradigm, these simulation results indicate
that the approach provides a significant benefit in localization and parameter estimation at low
light levels and when the nonlinearities in the motion model that define the confinement dominate
the particle behavior. For concreteness, we considered specific values of these parameters in the
simulations but it is intuitively clear that the nondimensional ratio

√
2D∆t
L defines the impact of

the confinement on the trajectory in a given axis. For large values of L, small values of D, or fast
imaging (and thus small ∆t), the motion will look very similar to free diffusion and, conversely,
at small values of L, large values of D, or slow imaging, the confinement will dominate the
dynamics. At higher signal levels, and when diffusion dominates, the standard paradigm works
well. However, even under these settings it is important to note that the fit to the MSD, while the
simplest approach to implement, has significantly worse performance than methods based on
MLE.

While this paper focused on confined diffusion and observations using the DH-PSF, it is
important to note that the SMC-EM framework is easily applied to a broad range of motion, PSF,
and camera models, through appropriate modification to the underlying distributions used in
the algorithm, and has been shown to be an effective approach, particularly under the low light
conditions [9] and for models with time-varying parameters [33].

A. Filtering and smoothing algorithms

The Gaussian Particle Filter (GPF) [34] approximates the filtered distribution as a Gaussian
(though extensions to more general distributions through propagating higher moments are
straightforward). As with all such filters, the GPF consists of a measurement update step and
a time update step. In the measurement update step, particles are drawn from an importance
sampling function, π(xt |Yt). The choice of this function is informed by the specific problem
(see [42–44] for details) but often this is selected to be the prediction distribution (a normal
distribution with a mean and covariance determined in the time update step). These samples
are weighted based on the measurement distribution and their sample mean and covariance
calculated to produce the filtered distribution. In the time update step, samples are drawn
from this filtered distribution, propagated through the motion model, and the sample mean and
covariance determined to produce the prediction distribution. In a simplification known as the
alternate GPF (aGPF), the weighted samples from the filtered distribution are reused in the time
update, avoiding the need to resample particles.

As shown in Alg. 1, in this work we make a small modification to the GPF to further reduce
its computational cost. Specifically, in the time update step, we select all the particles to be at
the mean of the filtered distribution. These are then propagated through the motion model as
usual. We also follow a suggestion of [34] and use these propagated particles in the measurement
update rather then drawing from the importance function. With these choices, we avoid the need
for resampling from any distribution, simplify the implementation of the propagation through
the motion model, and avoid the need to calculate explicitly the covariance matrix of either the
filtered of the predicted distribution.
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To initialize the filter at time t0, the first samples are drawn from an importance function
defined as a uniform density over a cubic volume centered at (xo, yo, 0), where (xo, yo) define the
center of the first image, with a side length of twice the pixel size ∆x (see Table 1). This is a
somewhat arbitrary choice and can be easily modified if there is additional information available
or if a larger uncertainty is needed at the initial time.

Algorithm 1 simplified GPF
1: /* Initialize */
2: Set t = 0
3: Sample particles x̃i

0, i = 1, . . . , M, from the initial importance function
4:
5: /* Measurement update */
6: /* Compute particle weights */
7: w̃i

t = p(yt |x̃i
t), i = 1, . . . , M.

8: /* Normalize the weights */

9: w̃i
norm,t =

w̃i
t∑︁M

j=1 w̃j
t
, i = 1, ..., M.

10: /* Calculate the mean of the filtered distribution */
11: µt =

∑︁M
j=1 w̃j

norm,tx̃
j
t.

12:
13: /* Time update */
14: /* Initialize M particles */
15: x̃i

t = µt, i = 1, . . . , M.
16: /* Propagate through the motion model */
17: x̃i

t+1 = ft(x̃i
t, wt, θ), i = 1, 2, . . . , M.

The BSPS, shown in Algorithm 2, takes the filtered weights of the sGPF {w̃j
norm,t, x

j
t : t =

1, . . . , N; j = 1, . . . , M} and calculates the smoothed weights. The computational complexity
of this scheme is O(NMK). We note that there are other variants of BSPS with even better
computational complexity, such as BSPS with rejection sampling [45]. Such approaches, however,
must compute upper bounds on the state transition density and we find the cost of doing so for
the confined model considered here makes such methods more costly than simple BSPS. One of
the benefits of BSPS, however, is that the simulated trajectories are independent to each other.
Our implementation takes advantage of this to simplify the computational load by parallelizing
computations when possible.
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Algorithm 2 Backward Simulation Particle Smoother
1: /* simulate K smoothed trajectories from time N */
2: for k = 1 to K do
3: /* draw index ℓ according to weights {w̃j

norm,N}
M
j=1 */

4: set x̃k
N |N = x̃ℓN .

5: end for
6: /* propagate the remaining simulated trajectories */
7: for t = N − 1 to 1 do
8: for k = 1 to K do
9: /* compute new weights */

10: w̃j,k
t |N ∝ wj

tp(x̃k
t+1 |N |x̃

j
t) for j = 1, ..., M.

11: /* normalize the smoothing weights */

12: w̃j,k
t |N =

w̃j,k
t|N∑︁M

j=1 w̃j,k
t|N

, j = 1, ..., M.

13: /* draw index ℓ according to {w̃j,k
t |N}

M
j=1 */

14: set x̃k
t |N = x̃ℓt .

15: end for
16: end for

B. M-step for parameter estimation

Under the confined diffusion model, there are six parameters to estimate: the confinement
lengths and diffusion coefficients in each of the three axes. We note that additional parameters
could be estimated as well, including the peak intensity parameter G and the background rate
Nbgd. Inserting the motion model into Eq. (15), the Q function under SMC-EM shows that the
parameters only appear in the I2 term. In what follows we describe only the parameters in the
x-axis; the remaining two axes follow the same procedure. The M step at the eth iteration is(︂

L̂e+1
x , D̂e+1

x

)︂
= arg max

Lx,Dx

N−1∑︂
t=1

1
K

K∑︂
k=1

log p(x̃e,k
t+1 |N |x̃

e,k
t |N), (18)

where p(·|·) is the one step transition probability of confined diffusion given in Eq. (1), N is the
number of time points in the trajectory, K is the number of simulations used in the BSPS, and
x̃e,k

t |N is the value of the kth simulated trajectory at the tth time step. Maximization with respect to
the confinement length does not depend on the diffusion parameter and yields

L̂e+1
x = max

t,k
2|x̃e,k

t |N |. (19)

It is important to note that the MC samples generated at the eth iteration are always within the
interval

[︁
−L̂e/2, L̂e/2

]︁
. This implies that (a) the initial guess of the confinement length must

be larger than the true value (in absolute value) and that (b) the estimated trajectory is bounded
by the estimated confinement length and is guaranteed to hit either the minimum or maximum
extent (or both) at least once. This helps to prevent large outliers in estimation.

To estimate the diffusion coefficient, we follow [8] and numerically search for the root of

∂I2
∂Dx

=
∂

∂Dx

N−1∑︂
t=1

1
K

K∑︂
k=1

log p(x̃e,k
t+1 |N |x̃

e,k
t |N). (20)

Note that the density p(·) in Eq. (20) depends on both Dx and Lx. However, the estimate for Lx
can be calculated from Eq. (19); thus L̂e+1

x should be used when evaluating Eq. (20). In this work
we numerically find the root of this expression using a bisection search.
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C. Localization-only schemes

Gaussian fitting (GF) to the DH-PSF

As given in Eqs. (2)–(4), the DH-PSF can be approximated by two lobes, each with a Gaussian
profile, that rotate about the lateral position of the particle as that particle moves along the optical
axis. To estimate the particle location, we fit the image data to the model in Eq. (2) using a
nonlinear least squares scheme to determine the centers of the two lobes (x1,2, y1,2), as well as the
parameters G and σxy. To initialize the optimizer, we selected the center of the brightest pixel in
each lobe. Once the center locations are determined, the midpoint of the line connecting them
and the angle of that line with respect to the horizontal axis are calculated. The lateral position
of the particle is then taken to be the midpoint and the axial position is inferred from Eq. (4).

Maximum likelihood estimation for sCMOS (MLEsCMOS)

From [14], the probability distribution function for the measured signal h from pixel p with both
shot noise and read-out noise can be approximated by

PsCMOS

(︂
h = Ĩp,t + σ

2
p,t

|︁|︁ λp,t(θxyz,t), Nbgd, gp,t, Varp,t

)︂
=

e−(λp,t+Nbgd+σ
2
p,t)(λp,t + Nbgd + σ

2
p,t)

h

Γ(h + 1)
,

(21)

where Ĩp,t denotes a Poisson process whose rate is determined by the sum of the background
rate and the rate λp,t(θxyz,t) defined by the PSF of the instrument and the position of the particle
(denoted here as θxyz,t), Γ(·) is the standard Gamma function, Nbgd is the background intensity
rate, and σp,t is the standard deviation of the pixel noise defined in Eq. (7) and given by the gain,
gp,t and variance Varp,t. MLEsCMOS, the MLE for the particle position θxyz,t, is then given by

θ̂xyz,t = arg min
θxyz,t

⎧⎪⎪⎨⎪⎪⎩−log
⎡⎢⎢⎢⎢⎣

P∏︂
p=1

PsCMOS(h = Ĩp,t + σ
2
p,t |λp,t(θxyz,t), Nbgd, gp,t, Varp,t)

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (22)

where P denotes the total number of pixels in an image. Using the DH-PSF given in Eq. (2) for
the rate λp,t, and defining h = Ĩp,t + σ

2
p,t, this estimate takes the form

θ̂xyz,t = arg min
θxyz,t

P∑︂
p=1

[︁
(λp,t + Nbgd + σ

2
p,t) − h log(λp,t + Nbgd + σ

2
p,t) + log Γ(h + 1)

]︁
. (23)
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